Impact of Smoking on Anal Abscess and Anal Fistula Diseases

Li-Hua Zheng¹, Ao-Zhe Zhang²,³,⁴,⁵, Yu-Ying Shi¹, Xin Li, Lan-Si Jia¹, Cong-Cong Zhi², Qiu-Xiang Yu², Wen Zhang¹, Yan-Jun Liu¹, Luan Wang¹, Dan Xiao²,³,⁴,⁵, Chen Wang²,³,⁴,⁵

¹Proctology Department, China-Japan Friendship Hospital, Beijing 100029, China
²Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
³Tobacco Medicine and Tobacco Cessation Centre, China-Japan Friendship Hospital, Beijing 100029, China
⁴WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, China-Japan Friendship Hospital, Beijing 100029, China
⁵National Clinical Research Centre for Respiratory Diseases, Beijing 100029, China
⁶Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China

Abstract

Background: Several studies have investigated the association between smoking and anal abscess and anal fistula (AA/F) diseases. However, the relationship between cigarette smoking and AA/F remains unclear. This study sought to assess the role of smoking in anorectal male patients in a Chinese population.

Methods: In this retrospective study, a questionnaire, including smoking history, was completed over a 3-month period by male inpatients in the Proctology Department of China-Japan Friendship Hospital. “Cases” were patients who had AA/F, and “controls” were patients with other anorectal complaints. Mann-Whitney U-test and Chi-square test were carried out to examine differences in baseline characteristics between groups. Subsequently, multivariate logistic regression was used to explore any related factors.

Results: A total of 977 patients aged from 18 to 80 years were included, excluding those diagnosed with inflammatory bowel disease or diabetes mellitus. Out of this total, 805 patients (82.4%) completed the entire questionnaire. Among the 805 patients, 334 (41.5%) were cases and 471 (58.5%) were controls. Results showed significant differences between cases and controls (χ² = 205.2, P < 0.001), with smoking found to be associated with the development of AA/F diseases (odds ratio: 12.331, 95% confidence interval: 8.364–18.179, P < 0.001).

Conclusions: This study suggested smoking to be a potential risk factor for the development of AA/F diseases in a Chinese population. Consequently, current smoking patients should be informed of this relationship, and further research should be conducted to explore and investigate this further.

Key words: Anal Abscess; Anal Fistula; Risk Factor; Smoking

INTRODUCTION

Anal abscess and anal fistula (AA/F) diseases are common disorders encountered by primary care physicians and colorectal surgeons. Pain, swelling, and fever are considered hallmark symptoms of AAs, with around 35% developing into an AF.[1] Research exploring hospital inpatient and outpatient databases, in a variety of countries, found the prevalence of AFs varied, ranging from 1.04 to 2.32 per 10,000.[2] Particularly, men aged 21–40 years old were found to be more likely to develop this disease.[3] Although these diseases are regarded as nonthreatening conditions, they can be impactful on a patient's well-being and quality of life, as well as a costly condition for the society. Therefore, it is important for clinicians to find appropriate treatment interventions.[4]

Considering smoking is a risk factor for inflammation,[5,6] and based on surgeons’ clinical impressions, we hypothesized smoking to be a risk factor for AA/F. In 2011, one case-control study from China suggested smoking to be a risk factor for AA/F. In 2012, another Chinese publication[7] reported this association. This study sought to assess the role of smoking in anorectal male patients in a Chinese population.

Access this article online

Quick Response Code: [QR Code Image]
Website: www.cmj.org
DOI: 10.4103/0366-6999.230738

Address for correspondence: Dr. Dan Xiao, Tobacco Medicine and Tobacco Cessation Centre, China-Japan Friendship Hospital, No. 2, East Yinhua Road, Chaoyang District, Beijing 100029, China
E-Mail: danxiao@263.net

© 2018 Chinese Medical Journal | Produced by Wolters Kluwer - Medknow

Received: 07-02-2018 Edited by: Ning-Ning Wang
study, based on an United States veteran population, found smoking to be a risk factor for AA/F.\[7] Furthermore, a retrospective case-control study for AF in China reported smoking to be a correlated factor of AF.\[8] However, contrary to this, another study reported no correlation between smoking and the transition from initial abscess to chronic fistula.\[9] Therefore, the relationship between smoking habit and AA/F diseases remains unclear.

The aim of this study was to test the hypothesis that smoking influences the risk of developing AA/F. We performed this retrospective case-control study to evaluate the associations between smoking and AA/F in a Chinese male population.

METHODS

Ethical approval

This retrospective case-control study was approved by the Ethics Committee of China-Japan Friendship Hospital, and all male patients who were included provided informed consent.

Data acquisition

We administered a one-page questionnaire to inpatients in the Proctology Department of China-Japan Friendship Hospital from July 1, 2017, to September 30, 2017.

All participants were asked whether they smoked or not, with current smokers asked to report how long they had smoked for and how much they smoked per day. Once the completed questionnaire was received, trained investigators recorded demographic and AA/F clinical data from each patient’s medical records. Patients with a history of inflammatory bowel disease (IBD) or diabetes mellitus (DM) were excluded from analysis.

Statistical analysis

“Cases” were patients who had AA/F, and “controls” were patients with other anorectal complaints (internal hemorrhoids, external hemorrhoid, mixed hemorrhoid, anal fissures, perianal eczema, and anal papilloma). Cases and controls were further stratified into three subgroups: (a) current smokers, (b) former smokers, and (c) nonsmokers.

RESULTS

Basic demographics characteristics

From July 1 to September 30, 2017, a total of 977 patients aged from 18 to 80 years were included, excluding patients with IBD and DM diagnoses. Of these, 805 (82.4%) completed the entire questionnaire, and 172 (17.6%) either declined were uncontactable or missed [Table 1].

Table 1 shows the basic characteristics of all patients. Of the 334 cases (41.5%), the mean age was 34 years with an age distribution as follows: 18–29 years (27.0%), 30–39 years (41.6%), 40–49 years (17.7%), 50–59 years (9.0%), and 60 years and over (4.8%). Whereas the 471 controls (58.5) had a mean age of 35 years old with an age distribution as follows: 18–29 years (24.6%), 30–39 years (41.6%), 40–49 years (16.4%), 50–59 years (9.8%), and 60 years and over (4.0%). In regards to race, Han accounted for the majority of cases, i.e., 769 (95.5%). None of the differences in age and race between cases and controls were statistically significant. Moreover, no differences were found in the baseline characteristics of the subgroups.

Smoking status

Table 2 shows the results comparing smoking status in cases and controls. Overall, out of the 805 who completed the entire questionnaire, 261 (32.5%) were current smokers. Furthermore, of the 334 cases, 202 (60.5%) were current smokers, 7 (2.1%) were former smokers, and 125 (37.4%) were nonsmokers. Of the 471 controls, 59 (12.5%) were current smokers, 25 (5.3%) were former smokers, and

<table>
<thead>
<tr>
<th>Variables</th>
<th>Controls (n = 471)</th>
<th>Cases (n = 334)</th>
<th>χ^2 or Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (Q₁, Q₃)</td>
<td>35.0 (30.0, 44.0)</td>
<td>34.0 (29.0, 43.0)</td>
<td>−0.863</td>
<td>0.388</td>
</tr>
<tr>
<td>Age group, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–29 years</td>
<td>116 (24.6)</td>
<td>90 (26.9)</td>
<td>3.200</td>
<td>0.525</td>
</tr>
<tr>
<td>30–39 years</td>
<td>196 (41.6)</td>
<td>139 (41.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40–49 years</td>
<td>77 (16.4)</td>
<td>59 (17.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–59 years</td>
<td>46 (9.8)</td>
<td>30 (9.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥60 years</td>
<td>36 (7.6)</td>
<td>16 (4.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han</td>
<td>448 (95.1)</td>
<td>321 (96.1)</td>
<td>0.449</td>
<td>0.503</td>
</tr>
<tr>
<td>Minority</td>
<td>23 (4.9)</td>
<td>13 (3.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mann-Whitney U-test and Chi-square test were used to examine differences in baseline characteristics between groups.
387 (82.2%) were nonsmokers. Results showed a significant difference between cases and controls ($\chi^2 = 205.2, P < 0.001$), indicating an association between smoking and the development of AA/F.

Moreover, multivariate logistic regression analysis was used to analyze the smoking effect in cases and controls further [Table 3]. Significant differences were observed for current smokers ($OR: 12.331, 95\% CI: 8.364–18.179, P < 0.001$), suggesting smoking to be a potential risk factor. However, no significant differences were observed for age or race.

DISCUSSION

This study showed an initial relationship between smoking and the development of AA/F in a Chinese population. Several strategies were implemented to minimize bias. First, all study investigators were trained to perform standardized and uniformed data collection procedures. Second, double blinding was conducted to prevent influence on results due to knowledge of group allocation. Investigators were oblivious to participant group allocation, and participants were given the questionnaire entitled “Is smoking a risk factor for surgical diseases?” to ensure they did not view themselves as either “cases” or “controls”. Regarding inclusion and exclusion criteria, patients with IBD and DM were excluded due to previously reported associations. Two questions were given to each patient to determine if they were “cases” or “controls”. Regarding the importance of physicians taking the necessary actions to intervene.

In this case-control study, we identified an increase in the development of AA/F in patients who smoke cigarettes. The cause of AA/F disease is poorly understood, but the consensus is due to infection of the anal glands and ducts. Cigarette smoke contains toxins and carcinogenic substances that contribute to infection, as well as the development of various diseases, and the development of AA/F in patients who smoke cigarettes. In this study, the smoking prevalence in this current male sample was higher income, and a higher education. In addition, a report in the China Report on the Health Hazards of Smoking. As a result, further exploration of the relationship between smoking and AA/F needs conducting, as well as emphasizing the importance of physicians taking the necessary actions to intervene.

In this case-control study, we identified an increase in the development of AA/F in patients who smoke cigarettes. The cause of AA/F disease is poorly understood, but the consensus is due to infection of the anal glands and ducts. Cigarette smoke contains toxins and carcinogenic substances that contribute to infection, as well as the development of various diseases, and the development of AA/F in patients who smoke cigarettes. In this study, the smoking prevalence in this current male sample was higher income, and a higher education. In addition, a report in the China Report on the Health Hazards of Smoking. As a result, further exploration of the relationship between smoking and AA/F needs conducting, as well as emphasizing the importance of physicians taking the necessary actions to intervene.

Table 2: Smoking status between patients who had anal abscess and anal fistula diseases and patients with other anorectal complaints

<table>
<thead>
<tr>
<th>Variables</th>
<th>Controls (n = 471)</th>
<th>Cases (n = 334)</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>387 (82.2)</td>
<td>125 (37.4)</td>
<td>205.171</td>
<td><0.001</td>
</tr>
<tr>
<td>Former-smoker</td>
<td>25 (5.3)</td>
<td>7 (2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current-smoker</td>
<td>59 (12.5)</td>
<td>202 (60.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mann-Whitney U-test and Chi-square test were used to examine differences between groups.

Table 3: Multivariate analysis of independent risk factors

<table>
<thead>
<tr>
<th>Variables</th>
<th>β</th>
<th>Wald χ^2</th>
<th>P</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18– 29 years</td>
<td>-0.1680</td>
<td>0.4464</td>
<td>0.5040</td>
<td>0.845</td>
<td>0.516–1.384</td>
</tr>
<tr>
<td>30– 39 years</td>
<td>-0.0069</td>
<td>0.0005</td>
<td>0.9825</td>
<td>0.993</td>
<td>0.533–1.849</td>
</tr>
<tr>
<td>40– 49 years</td>
<td>-0.4201</td>
<td>1.1700</td>
<td>0.2794</td>
<td>0.657</td>
<td>0.307–1.406</td>
</tr>
<tr>
<td>50– 59 years</td>
<td>-0.3139</td>
<td>0.4902</td>
<td>0.4839</td>
<td>0.731</td>
<td>0.303–1.759</td>
</tr>
<tr>
<td>≥60 years</td>
<td>0.5398</td>
<td>1.6170</td>
<td>0.2035</td>
<td>1.716</td>
<td>0.747–3.942</td>
</tr>
<tr>
<td>Han</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>(reference)</td>
</tr>
<tr>
<td>Former-smoker</td>
<td>0.0136</td>
<td>0.0008</td>
<td>0.9768</td>
<td>1.014</td>
<td>0.406–2.533</td>
</tr>
<tr>
<td>Current-smoker</td>
<td>2.5121</td>
<td>160.9172</td>
<td><0.001</td>
<td>12.331</td>
<td>8.364–18.179</td>
</tr>
</tbody>
</table>

Logistic regression was used to explore the related factors. OR: Odds ratio; CI: Confidence interval.
benzo[a]pyrene metabolites, which provides a plausible mechanism for a causal association between smoking and anal cancer.[21] Further researches should be performed to explain why smoking could be increasing the number of incidences of AA/F, with application to epidemiological, clinical, and mechanism knowledge.[22]

Compared with a previous case-control study for AF in China,[9] our pilot study, to our knowledge, first showed an initial relationship between smoking and the development of AA/F. Although there was a limitation of 82% response rate, the sample size was adequate enough to analyze, producing data and results for a possible relationship. A further limitation could be recall bias, which may exist due to the questionnaire being administered through phone. Nevertheless, to minimize this bias, only patients who were discharged recently were contacted. As for the questionnaire, a long questionnaire was deemed unrealistic to be conducted by telephone, so it was adjusted to one page. Moreover, all smoking-related questions were referred to by the Global Adult Tobacco Survey (GATS), which is a validated and widely accepted measure.[23,24]

In conclusion, we have shown a significant association between smoking and the development of AA/F in a Chinese population, highlighting a new area of research to be explored in the future. This study emphasizes the importance of making appropriate prevention and management interventions for AA/F patients, such as smoking cessation, to improve their quality of life and reduce the burden on the society.

Acknowledgment

We are very grateful to Miss. Kate Pittaccio from Queen Mary University of London to polish the language. And we thank Professor Yan-Mei Wang, Doctor Xue-Shun Fan, and Doctor Hui Li for their support. We also thank Yao-Wen Zhang for his help on data statistics.

Financial support and sponsorship

This study was supported by the grants from the National Key Research and Development Program of China (No. 2017YFC1309400) and Research Foundation of China-Japan Friendship Hospital (No. 2017-1-MS-4).

Conflicts of interest

There are no conflicts of interest.

REFERENCES

吸烟对肛周脓肿及肛瘘疾病的影响

摘要

背景：目前，吸烟与肛周脓肿、肛瘘疾病的关系尚不明确。本文的目的是在中国男性人群中探讨吸烟对肛周脓肿、肛瘘疾病的影响。

方法：本文为回顾性研究，对2017年7月–2017年9月期间在中日医院肛肠科进行手术的所有男性患者进行电话回访，收集吸烟情况。病例组为患有肛周脓肿、肛瘘的患者，对照组为患有肛肠科其它疾病的患者。应用曼-惠特尼U检验和卡方检验分析组间差异，多因素回归分析潜在的影响因素。

结果：在排除能引起感染的炎症性疾病、糖尿病后，本研究共纳入977名18–80岁男性患者。其中805人（82.4%）完成问卷，病例组为334（41.5%）人，对照组为471（58.5%）人。结果显示，病例组与对照组患者在吸烟方面有显著差异（OR: 12.331, 95% CI: 8.364–18.179, P <0.001），提示吸烟与肛周脓肿、肛瘘具有相关性。

结论：本研究提出在中国人群中吸烟是肛周脓肿、肛瘘疾病的潜在危险因素。因此，对患有肛周脓肿、肛瘘疾病的吸烟者应告知吸烟产生的此影响。同时，亦需要开展进一步地研究以深入揭示两者关系。